6,676 research outputs found

    Air Pollution and Per Capita Income: A Disaggregation of the Effects of Scale, Sectoral Composition, and Technological Change

    Get PDF
    During the last decade, researchers have investigated the relationship between per capita income and environmental quality. This paper disaggregates the relationship between per capita income and emissions of carbon monoxide, carbon dioxide, sulfur dioxide, and volatile organic compounds into scale, composition and technology effects, using data from European and North American countries from the period 1980-1986. Results indicate that the scale effect outweighs the composition and technology effects in the cases of carbon dioxide and volatile organic compounds, while the opposite is true in the cases of carbon monoxide and sulfur dioxide. The results also suggest that greater democracy is associated with lower emissions of all four pollutants.Environmental Kuznets curve; emissions; carbon monoxide; carbon dioxide; sulfur dioxide; volatile organic compounds

    Rotation in the Orion Nebula Cluster

    Get PDF
    Eighteen fields in the Orion Nebula Cluster (ONC) have been monitored for one or more observing seasons from 1990-99 with a 0.6-m telescope at Wesleyan University. Photometric data were obtained in Cousins I on 25-40 nights per season. Results from the first 3 years of monitoring were analyzed by Choi & Herbst (1996; CH). Here we provide an update based on 6 more years of observation and the extensive optical and IR study of the ONC by Hillenbrand (1997) and Hillenbrand et al. (1998). Rotation periods are now available for 134 ONC members. Of these, 67 were detected at multiple epochs with identical periods by us and 15 more were confirmed by Stassun et al. (1999) in their study of Ori OBIc/d. The bimodal period distribution for the ONC is confirmed, but we also find a clear dependence of rotation period on mass. This can be understood as an effect of deuterium burning, which temporarily slows the contraction and thus spin-up of stars with M <0.25 solar masses and ages of ~1 My. Stars with M <0.25 solar masses have not had time to bridge the gap in the period distribution at ~4 days. Excess H-K and I-K emission, as well as CaII infrared triplet equivalent widths (Hillenbrand et al. 1998), show weak but significant correlations with rotation period among stars with M >0.25 solar masses. Our results provide new observational support for the importance of disks in the early rotational evolution of low mass stars. [abridged]Comment: 18 pages of text, 17 figures, and 4 tables; accepted for publication in The Astronomical Journa

    MHD simulations of disk-star interaction

    Full text link
    We discuss a number of topics relevant to disk-magnetosphere interaction and how numerical simulations illuminate them. The topics include: (1) disk-magnetosphere interaction and the problem of disk-locking; (2) the wind problem; (3) structure of the magnetospheric flow, hot spots at the star's surface, and the inner disk region; (4) modeling of spectra from 3D funnel streams; (5) accretion to a star with a complex magnetic field; (6) accretion through 3D instabilities; (7) magnetospheric gap and survival of protoplanets. Results of both 2D and 3D simulations are discussed.Comment: 12 pages, 10 figures, Star-Disk Interaction in Young Stars, Proceedings of the International Astronomical Union, IAU Symposium, Volume 243. See animations at http://astro.cornell.edu/~romanova/projects.htm and at http://astro.cornell.edu/us-rus

    Diamagnetic Blob Interaction Model of T Tauri Variability

    Get PDF
    Assuming a diamagnetic interaction between a stellar-spot originated localized magnetic field and gas blobs in the accretion disk around a T- Tauri star, we show the possibility of ejection of such blobs out of the disk plane. Choosing the interaction radius and the magnetic field parameters in a suitable way gives rise to closed orbits for the ejected blobs. A stream of matter composed of such blobs, ejected on one side of the disk and impacting on the other, can form a hot spot at a fixed position on the disk (in the frame rotating with the star). Such a hot spot, spread somewhat by disk shear before cooling, may be responsible in some cases for the lightcurve variations observed in various T-Tauri stars over the years. An eclipse-based mechanism due to stellar obscuration of the spot is proposed. Assuming high disk inclination angles it is able to explain many of the puzzling properties of these variations. By varying the field parameters and blob initial conditions we obtain variations in the apparent angular velocity of the hot spot, producing a constantly changing period or intermittent periodicity disappearance in the models.Comment: 6 pages, 4 figures, aas2pp4 styl

    A 10-micron Search for Inner-Truncated Disks Among Pre-Main-Sequence Stars With Photometric Rotation Periods

    Full text link
    We use mid-IR (primarily 10 ÎĽ\mum) photometry as a diagnostic for the presence of disks with inner cavities among 32 pre-main sequence stars in Orion and Taurus-Auriga for which rotation periods are known and which do not show evidence for inner disks at near-IR wavelengths. Disks with inner cavities are predicted by magnetic disk-locking models that seek to explain the regulation of angular momentum in T Tauri stars. Only three stars in our sample show evidence for excess mid-IR emission. While these three stars may possess truncated disks consistent with magnetic disk-locking models, the remaining 29 stars in our sample do not. Apparently, stars lacking near-IR excesses in general do not possess truncated disks to which they are magnetically coupled. We discuss the implications of this result for the hypothesis of disk-regulated angular momentum. Evidently, young stars can exist as slow rotators without the aid of present disk-locking, and there exist very young stars already rotating near breakup velocity whose subsequent angular momentum evolution will not be regulated by disks. Moreover, we question whether disks, when present, truncate in the manner required by disk-locking scenarios. Finally, we discuss the need for rotational evolution models to take full account of the large dispersion of rotation rates present at 1 Myr, which may allow the models to explain the rotational evolution of low-mass pre-main sequence stars in a way that does not depend upon braking by disks.Comment: 20 pages, 4 figure

    Multiple protostellar systems. II. A high resolution near-infrared imaging survey in nearby star-forming regions

    Full text link
    (abridged) Our project endeavors to obtain a robust view of multiplicity among embedded Class I and Flat Spectrum protostars in a wide array of nearby molecular clouds to disentangle ``universal'' from cloud-dependent processes. We have used near-infrared adaptive optics observations at the VLT through the H, Ks and L' filters to search for tight companions to 45 Class I and Flat Spectrum protostars located in 4 different molecular clouds (Taurus-Auriga, Ophiuchus, Serpens and L1641 in Orion). We complemented these observations with published high-resolution surveys of 13 additional objects in Taurus and Ophiuchus. We found multiplicity rates of 32+/-6% and 47+/-8% over the 45-1400 AU and 14-1400 AU separation ranges, respectively. These rates are in excellent agreement with those previously found among T Tauri stars in Taurus and Ophiuchus, and represent an excess of a factor ~1.7 over the multiplicity rate of solar-type field stars. We found no non-hierarchical triple systems, nor any quadruple or higher-order systems. No significant cloud-to-cloud difference has been found, except for the fact that all companions to low-mass Orion protostars are found within 100 AU of their primaries whereas companions found in other clouds span the whole range probed here. Based on this survey, we conclude that core fragmentation always yields a high initial multiplicity rate, even in giant molecular clouds such as the Orion cloud or in clustered stellar populations as in Serpens, in contrast with predictions of numerical simulations. The lower multiplicity rate observed in clustered Class II and Class III populations can be accounted for by a universal set of properties for young systems and subsequent ejections through close encounters with unrelated cluster members.Comment: 15 pages, 6 figures, accepted for publication in Astronomy & Astrophysic

    Catching GRBs with atmospheric Cherenkov telescopes

    Full text link
    Fermi has shown GRBs to be a source of >10 GeV photons. We present an estimate of the detection rate of GRBs with a next generation Cherenkov telescope. Our predictions are based on the observed properties of GRBs detected by Fermi, combined with the spectral properties and redshift determinations for the bursts population by instruments operating at lower energies. While detection of VHE emission from GRBs has eluded ground-based instruments thus far, our results suggest that ground-based detection may be within reach of the proposed Cherenkov Telescope Array (CTA), albeit with a low rate, 0.25 - 0.5/yr. Such a detection would help constrain the emission mechanism of gamma-ray emission from GRBs. Photons at these energies from distant GRBs are affected by the UV-optical background light, and a ground-based detection could also provide a valuable probe of the Extragalactic Background Light (EBL) in place at high redshift.Comment: 4 pages, 3 figures, to appear in the Proceedings of "Gamma Ray Bursts 2010", held Nov. 1-4, 2010 in Annapolis, M
    • …
    corecore